Model-Free Renewable Scenario Generation Using Generative Adversarial Networks

نویسندگان

  • Yize Chen
  • Yishen Wang
  • Daniel S. Kirschen
  • Baosen Zhang
چکیده

Scenario generation is an important step in the operation and planning of power systems with high renewable penetrations. In this work, we proposed a data-driven approach for scenario generation using generative adversarial networks, which is based on two interconnected deep neural networks. Compared with existing methods based on probabilistic models that are often hard to scale or sample from, our method is data-driven, and captures renewable energy production patterns in both temporal and spatial dimensions for a large number of correlated resources. For validation, we use wind and solar times-series data from NREL integration data sets. We demonstrate that the proposed method is able to generate realistic wind and photovoltaic power profiles with full diversity of behaviors. We also illustrate how to generate scenarios based on different conditions of interest by using labeled data during training. For example, scenarios can be conditioned on weather events (e.g. high wind day) or time of the year (e,g. solar generation for a day in July). Because of the feedforward nature of the neural networks, scenarios can be generated extremely efficiently without sophisticated sampling techniques. Index Terms Renewable integration, scenario generation, deep learning, generative models,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Bayesian Renewables Scenario Generation via Deep Generative Networks

We present a method to generate renewable scenarios using Bayesian probabilities by implementing the Bayesian generative adversarial network (Bayesian GAN), which is a variant of generative adversarial networks based on two interconnected deep neural networks. By using a Bayesian formulation, generators can be constructed and trained to produce scenarios that capture different salient modes in ...

متن کامل

An Unsupervised Deep Learning Approach for Scenario Forecasts

In this paper, we propose a novel scenario forecasts approach which can be applied to a broad range of power system operations (e.g., wind, solar, load) over various forecasts horizons and prediction intervals. This approach is model-free and datadriven, producing a set of scenarios that represent possible future behaviors based only on historical observations and point forecasts. It first appl...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09676  شماره 

صفحات  -

تاریخ انتشار 2017